A space-time finite element method for fractional wave problems
نویسندگان
چکیده
منابع مشابه
A space-time finite element method for the wave equation*
where n is a bounded open domain in R d with d ffi 1, 2 and T > 0. We have restricted our attention to a specific problem entirely to keep the presentation simple. Our results apply to considerably more general second-order hyperbolic problems. Typically an approximation to (1) is found by first discretizing in space to obtain the semidiscrete problem that consists of ordinary differential equa...
متن کاملA Finite Element Method for Time Fractional Partial Differential Equations
In this paper, we consider the finite element method for time fractional partial differential equations. The existence and uniqueness of the solutions are proved by using the Lax-Milgram Lemma. A time stepping method is introduced based on a quadrature formula approach. The fully discrete scheme is considered by using a finite element method and optimal convergence error estimates are obtained....
متن کاملGalerkin Finite Element Approximations for Stochastic Space-Time Fractional Wave Equations
Abstract. The traditional wave equation models wave propagation in an ideal conducting medium. For characterizing the wave propagation in inhomogeneous media with frequency dependent power-law attenuation, the spacetime fractional wave equation appears; further incorporating the additive white Gaussian noise coming from many natural sources leads to the stochastic spacetime fractional wave equa...
متن کاملA continuous space-time finite element method for the wave equation
We consider a finite element method for the nonhomogeneous second-order wave equation, which is formulated in terms of continuous approximation functions in both space and time, thereby giving a unified treatment of the spatial and temporal discretizations. Our analysis uses primarily energy arguments, which are quite common for spatial discretizations but not for time. We present a priori noda...
متن کاملAdaptive Space-Time Finite Element Methods for Parabolic Optimization Problems
In this paper we summerize recent results on a posteriori error estimation and adaptivity for space-time finite element discretizations of parabolic optimization problems. The provided error estimates assess the discretization error with respect to a given quantity of interest and separate the influences of different parts of the discretization (time, space, and control discretization). This al...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerical Algorithms
سال: 2020
ISSN: 1017-1398,1572-9265
DOI: 10.1007/s11075-019-00857-w